PLEASE ANSWER ALL QUESTIONS. PLEASE EXPLAIN YOUR ANSWERS.

1. Consider the extensive-form game given by the following game tree (the first payoff is that of player 1, the second payoff that of player 2, etc.):

- (a) Answer the following questions.
 - i. Is this a game of perfect or imperfect information? How many proper subgames are there (excluding the game itself)? What are the strategy sets of the three players?
 - ii. Find all (pure strategy) Subgame-perfect Nash Equilibria. Argue why you use the solution method you use.
 - iii. Is the strategy profile (A, rr', L) a Nash Equilibrium? Discuss briefly (max. 3 sentences).

Solution: Perfect information. 3 proper subgames. $S_1 = \{A, B\}$. $S_2 = \{ll', lr', rl', rr'\}$. $S_3 = \{L, R\}$. Since perfect, complete information, we can solve by backward induction to get $SPNE = \{(B, rl', R)\}$. The strategy profile (A, rr', L) is NE but rests on off-equilibrium-path 'threats' that are not credible.

- (b) Consider again the game in (a), but suppose now that player 2 does not observe the move of player 1.
 - i. Draw the resulting game tree.
 - ii. Is this a game of perfect or imperfect information? How many proper subgames are there (excluding the game itself)? What are the strategy sets of the three players?
 - iii. Find all (pure strategy) Subgame-perfect Nash Equilibria. Compare to the solution in (a).

Solution: Game tree obtained by connecting P2's two nodes in the original tree. P2 now has a single information set. There is 1 proper subgame. Strategy sets as before, except $S_2 = \{l, r\}$. P3's subgame gives $s_3 = R$. Any SPNE must have $s_3 = R$, and thus we can substitute this into the game, yielding:

Player 2 l rPlayer 1 A $\underline{6,0}$ $\underline{3,3}$ A $\underline{4,3}$ 2,2

Thus: $SPNE = \{(A, r, R)\}$. Now, P1 has an incentive to deviate to A if P2 plays l, making it impossible to have a SPNE where P1 plays B.

2. Consider a second-price sealed bid auction with two bidders, who have valuations v_1 and v_2 , respectively.

Assume that the values are distributed independently uniformly with

$$v_i \sim u(0,1).$$

Thus, the values are **private**. Show that there is a symmetric Bayesian Nash Equilibrium where the players bid their valuation: $b_i(v_i) = v_i$ (recall that the auction format is second-price sealed bid).

Solution: Throughout suppose that j keeps to his equilibrium strategy: $b_j = v_j$. The probability that two bids are the same is zero, and therefore we only consider 'inequalities'.

Suppose player *i* deviates by bidding $b' < v_i$. If $v_j > v_i$ then $b' < b_j$ and player *i* loses in either case. If $v_j < b' < v_i$ then player *i* wins and pays $p = v_j$ in either case. If $b' < v_j < v_i$ then player *i* wins and gets payoff $v_i - v_j > 0$ if he sticks to the equilibrium strategy, and he loses and gets payoff 0 if he deviates. Thus, $b' < v_i$ is never a profitable deviation.

Suppose player *i* deviates by bidding $b' > v_i$. If $v_j < v_i$ then $b' > b_j$ and player *i* wins and pays $p = v_j$ in either case. If $v_j > b' > v_i$ then player *i* loses in either case. If $b' > v_j > v_i$ then player *i* loses and gets payoff 0 if he sticks to the equilibrium strategy, and wins and gets payoff $v_i - b' < 0$ if he deviates. Thus, $b' > v_i$ is never a profitable deviation.

Hence, bidding b_j is weakly optimal for both players, and therefore a NE.

3. Three entrepreneurs are considering starting a new tech company. They are free to form a company of any size between themselves. Entrepreneurs A and B are very experienced, with A being slightly more experienced than B, whereas entrepreneur C has no experience whatsoever. If entrepreneurs A and B work together in the company, the value of the company is 5 dollars (regardless of whether entrepreneur

C joins the company). If entrepreneur A starts the company alone or with C, it is worth 2 dollars. If entrepreneur B starts the company alone it is worth 0 dollar, but if B starts it with C, it is worth 1 dollar. If entrepreneur C starts the company alone, it is worth 0 dollar.

(a) Think of this situation as a coalitional game with transferable payoffs. Write down the value of each coalition.

Solution: The values are:

$$V(ABC) = V(AB) = 5,$$

$$V(AC) = V(A) = 2,$$

$$V(BC) = 1,$$

$$V(B) = V(C) = 0.$$

(b) Find the core of this game.

Solution: Feasibility implies $V_A + V_B + V_C \leq 5$, and the coalition values give us the following restrictions:

$$V_A + V_B + V_C \ge 5,$$

$$V_A + V_B \ge 5,$$

$$V_A + V_C \ge 2,$$

$$V_B + V_C \ge 1,$$

$$V_A \ge 2,$$

$$V_B \ge 0,$$

$$V_C \ge 0.$$

Since $V_A + V_B \ge 5$, then the core (if it is non-empty) must have $V_A + V_B = 5$ and $V_C = 0$. Furthemore, if $V_A \ge 2$ and $V_B \ge 1$, this satisfies all the restrictions, whereas if these inequalities do not hold, either A or B can 'deviate'.

Hence, the core is equal to $\{(V_A, V_B, V_C) = (2 + v, 3 - v, 0), v \in [0, 2]\}.$

(c) If all the entrepreneurs obtain a strictly positive payoff in the core explain why this is. If some entrepreneur receives a zero payoff in the core, explain why this is.

Solution: Entrepreneur C receives a zero payoff because A and B can generate the maximum value of the firm alone, and C cannot generate any value on his own. Thus, even though C could generate value in some configurations of the firm, A and B do not need him and therefore he ends up with zero payoff.

4. Consider the following version of Spence's education signaling model, where a firm is hiring a worker. Workers are characterized by their type θ , which measures their ability. There are two worker types: $\theta \in \{\theta_L, \theta_H\}$. Nature chooses the worker's type, with $\mathbb{P}(\theta = \theta_H) = p$ and $\mathbb{P}(\theta = \theta_L) = 1 - p$. Assume $p \in (0, 1)$. The worker observes his own type, but the firm does not.

The worker can choose his level of education: $e \in \mathbb{R}^+$. The cost to him of acquiring this education is

$$c_{\theta}(e) = \frac{e}{\theta}.$$

Education is observed by the firm, who then forms beliefs about the worker's type: $\mu(\theta|e)$. We assume that the marginal productivity of a worker is equal to his ability θ and that the firm is in competition such that it pays the marginal productivity: $w(e) = \mathbb{E}(\theta|e)$. Thus, the payoff to a worker conditional on his type and education is

$$u_{\theta}(e) = w(e) - c_{\theta}(e)$$

Suppose for this exercise that $\theta_H = 4$ and $\theta_L = 2$.

(a) In a separating equilibrium the low-ability worker chooses education level e_L and obtains wage $w_L = w(e_L)$. Is it possible that $e_L > 0$? Explain briefly (max. 3 sentences).

Solution: No. Suppose $e_L > 0$. In a separating equilibrium, L gets $2 - e_L/2$. For any beliefs we have $u_L(0) = w(0) \ge \theta_L = 2 > 2 - e_L/2$: a profitable deviation exists.

(b) Find a separating pure strategy Perfect Bayesian Equilibrium where the two types choose education levels e_L and e_H , respectively, and the low ability type is indifferent between choosing e_L and e_H . Assume that off the equilibrium path, the firm assigns zero probability to the worker being type θ_H .

Solution: By assumption, $\mu(\theta_H|e)$ is equal to 1 if $e = e_H$ and equal to 0 otherwise. Thus, w(e) is equal to 4 when $e = e_H$ and equal to 2 otherwise. We argued above that $e_L = 0$ in equilibrium. Given w(e), $e = e_L = 0$ strictly dominates all $e \neq e_H$ for both types. Hence, only the strategies e_L and e_H need to be considered. To make the low type indifferent:

$$u_L(0) = u_L(e_H) \Leftrightarrow 2 = 4 - \frac{e_H}{2} \Leftrightarrow e_H = 4.$$

Clearly, the high type prefers $e_H = 4$ as for any $e' \neq e_H$, we have

$$u_H(e') = 2 - \frac{e'}{4} \le 2 < 4 - \frac{4}{4} = u_H(e_H).$$

Hence: the specified w(e) and $\mu(\cdot|e)$, together with $e_L = 0$ and $e_H = 4$ form a PBE.

(c) Find a pooling pure strategy Perfect Bayesian Equilibrium in which both types choose education level \overline{e} , and the low ability type is indifferent between choosing

e = 0 and $e = \overline{e}$. Assume that off the equilibrium path, the firm assigns zero probability to the worker being type θ_H . Does the pooling equilibrium of (c) satisfy SR6? You can show this either graphically or algebraically.

Solution: $\mu(\theta_H|e)$ is equal to p if $e = \bar{e}$ and equal to 0 otherwise. Thus, w(e) is equal to p(4) + (1-p)(2) = 2(1+p) when $e = \bar{e}$ and equal to 2 otherwise. Given w(e), e = 0 strictly dominates all $e \neq \bar{e}$ for both types. Hence, only these two strategies need to be considered. To make the low type indifferent:

$$u_L(0) = u_L(\bar{e}) \Leftrightarrow 2 = 2(1+p) - \frac{\bar{e}}{2} \Leftrightarrow \bar{e} = 4p.$$

Clearly, the high type prefers $e = \bar{e} = 4p$ over e = 0 as

$$u_H(\bar{e}) = 2(1+p) - \frac{\bar{e}}{4} = 2(1+p) - \frac{4p}{4} = 2+p \ge 2 = u_H(0)$$

holds. Hence: the specified w(e), $\mu(\cdot|e)$, together with $\bar{e} = p$ form a PBE.

Checking SR6: For the low-ability type, the equilibrium strategy strictly dominates e whenever

$$2(1+p) - \frac{\bar{e}}{2} > 4 - \frac{e}{2} \Leftrightarrow 2 > 4 - \frac{e}{2} \Leftrightarrow e > 4.$$

For the high-ability type, the equilibrium strategy strictly dominates \boldsymbol{e} whenever

$$2(1+p) - \frac{\bar{e}}{4} > 4 - \frac{e}{4} \Leftrightarrow 2+p > 4 - \frac{e}{4} \Leftrightarrow e > 4(2-p) > 4.$$

Hence, $e \in (4, 4(2 - p))$ are equilibrium dominated for L but not for H. SR6: $\mu(\theta_H|e) = 1$ and hence w(e) = 4 for $e \in (4, 4(2 - p))$. The pooling equilibrium does not satisfy SR6.